DEPARTMENT OF DEFENCE DSTo
FENCE SCIENCE & TECHNOLOGY ORGANISATION

An Investigation of Target
Detection Ability Using Spectral
Signatures at Hyperspectral
Resolution

T.P. Bubner, S.K. Kempinger and
V.K. Shettigara

DSTO-TR-0807

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

A

20010430 049




An Investigation of Target Detection Ability Using
Spectral Signatures at Hyperspectral Resolution.

T. P. Bubner, S. K. Kempinger and V. K. Shettigara.

Surveillance Systems Division
Electronics and Surveillance Research Laboratory

DSTO-TR-0807

ABSTRACT

This report addresses a variety of issues expected to influence the performance of
airborne high spectral resolution (hyperspectral) Electro-Optic (EO) sensors when
used as surveillance tools. Fundamental phenomenology issues have been
considered with the breadth of this study ranging from investigation into the
reflectance properties of materials, the influence of the atmosphere, and modelling
of a sensor’s performance. Simple data analysis and target detection assessment
techniques including Target to Clutter Ratio measures and single and multiple band
'likelihood ratio detection' have been employed on an illustrative example. Initial
results are promising, indicating high probabilities of detection with low false alarm

rates for the test example.
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An Investigation of Target Detection Ability
Using Spectral Signatures at Hyperspectral
Resolution.

Executive Summary

This report addresses a variety of issues, which are expected to influence the
performance of hyperspectral sensors as surveillance tools. Fundamental
phenomenology issues have been considered and analysis and results built upon
this foundation. The breadth of this study has ranged from investigation into the
reflectance properties of materials, the influence of the atmosphere, a sensor’s
performance, data analysis and target detection assessment. Although the initial
results are good, they need to be taken as indicative only, due to the limited scope of
the analysis.

This study has demonstrated that a sensor operating at hyperspectral resolution has
potential for detecting targets such as green camouflage in an eucalypt background
with high probability and a low false alarm rate. Such targets would be expected to
be difficult to detect by lower spectral resolution devices of similar spatial
resolution. The ability to detect ‘sub-pixel’ targets is confirmed, with the case
presented indicating high detection probabilities and low false alarm rates even
when the target occupies only 20% of the pixel. These results are consistent with
findings reported by several other researchers.

When excluding other performance limiting factors, atmosphere propagation,
altitude and geometry variations were found not to markedly alter the test case’s
single band analysis, target and background separation, and hence detection
performance. If both targets and background are influenced equally then the Target
to Clutter Ratio (TCR) measure remains constant.

Under normal midday operational conditions target detection performance was not
system noise limited. Only under low light or poor target and background
separation conditions was system noise observed to influence detection performance
appreciably.

An approach has been outlined for the assesment of target detection performance for
a selected surveillance scenario. A sound procedure has been developed upon
which this work can be extended to include the identification of the most
appropriate spectral channels, their band-width and sampling intervals for the given
surveillance scenario. This procedure also provides a platform for further studies to
better quantify the performance and operational parameters of hyperspectral
surveillance sensors.
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1. Introduction

1.1 Background

The electro-optic (EO) spectrum from 0.4 to 15 micrometers (um) contains a vast
reservoir of information about the environment and the effects of anthropogenic
activity within it. Efficient use of all this information should enhance defence

capability.[1]

As EO technology has evolved, the development of tools to explore regions outside
the usual visible range (0.4 to 0.7 um) has blossomed. While there is broad scope for
discussion on systems and technologies suitable for EO detection, this report is
interested in investigating issues associated with the potential utility of high
spectral resolution sensors as broad area surveillance tools.

Effective surveillance of the vast, sparsely populated regions of Northern Australia
has been identified as being of importance in the strategic defence of Australia. This
has been flagged by the JP-129 project, and significant efforts are currently under
way to assess the suitability of selected tools including Synthetic Aperture Radar
and EO systems to meet the project objectives.

Hyperspectral (HS) imaging presents as a technology that may be suitable to address
some of the JP-129 objectives. Before this technology can be incorporated into
surveillance systems, significant investigations are needed to address its potential
operational effectiveness. This report is directed at investigating some of the
phenomenology associated with this technology in the reflective part of the EO
spectrum (0.4 to 2.5 pm) and to develop an approach to assess likely target detection
performance.

HS imaging systems normally collect between 100-300 spectral bands and operate at
a spectral resolution (AAL/A) around 0.01, where AA represents the width of the
individual spectral bands and A the extent of the HS system’s entire operational
spectral range. This resolution corresponds to approximately a 10 to 20 nanometre
(nm) spectral bandwidth for a ‘reflective’ HS sensor operating between 0.4 to 2.5 pm

1]

This HS technology is reported to have the potential to provide superior target to
background discrimination, when compared to equivalent spatial resolution single-
band devices. HS systems have several potential advantages over multispectral and
single band systems. They have the capability of detecting targets of sizes smaller
than an individual pixel. They also have the ability to identify a target/feature based
on its chemical constituents’ reflectance properties. This procedure requires the
comparison of an image pixel’s spectrum with material reference spectra and
matching spectral features to allow identification. This technique is used by the
mining industry to locate mineral deposits. [2,3]
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HS technology is finding application in a range of areas under a broad umbrella of
activities, including environmental monitoring, surveillance and mineral
exploration. Investigations into the phenomenology of land mine detection,
camouflage detection and identification, and intelligent missile seeking [4,5,6] as
well as chemical plume detection for battlefield monitoring [6] and pollution
detection from industrial facilities [7,8] are but a few examples of potential uses.

1.2 Aims

The objective of this report is to investigate issues affecting the ability to detect
targets of interest against various backgrounds, by the application of remotely
sensed radiance information at hyperspectral resolution. This investigation is based
on high resolution spectral signatures, upon which ‘forward modelling techniques’
are applied to incorporate the effects of the sun-sensor geometry, the atmosphere
and the sensor’s characteristics in modulating this information.

This report aims to investigate phenomenology issues including the measurement of
material reflectance, atmospheric propagation effects and the application of
atmospheric modelling tools. It also aims to provide analysis procedures and
approaches to exploit modelled results.

The purpose of this report is not to provide a definitive answer to hyperspectral
band selection issues, nor quantify solutions to the detection performance
enhancements expected by using hyperspectral techniques, but more to outline
appropriate approaches and identify issues which need attention when considering
a hyperspectral sensor for surveillance purposes.

1.3 Scope

The target and background combinations, sensing geometry and atmospheric
conditions that have been employed in this study are guided by a desire to apply
scenarios congruent with the JP-129 task. The scenario employed corresponds to a
sensor/airborne platform flying at 2.5 km altitude with nadir viewing geometry. A

list of targets and backgrounds for which spectra were investigated is provided in
Table 1.1.
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Table 1.1. Targets and backgrounds investigated.

TARGET CLASS

___Target Background
Aluminium dinghy Eucalypt (Z miniata & E tetrodonta)
Blue inflatable boat Leaf Litter
Green camouflage Mangroves

Red vehicles Melaleuca
Military vehicle
White fibreglass boat
White vehicles

The scope of the study has been confined to the comparison of reflectance spectra of
targets and backgrounds in Table 1.1, the modelling of the radiance arriving at a
given sensor, (assuming appropriate environmental conditions) and the modelling
of this sensor’s outputs.

The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer - Jet Propulsion
Laboratory, USA) hyperspectral sensor’s performance has been modelled in this
study [9]. Predicted ‘at-sensor’ radiance spectra were converted to corresponding
digital number outputs by the application of the AVIRIS sensor’s spectral response
functions and radiometric calibration coefficients.

In this study the performance of two moderate resolution, radiative transfer
modelling packages have been compared.

2. Modelling Methods

2.1 Acquisition of Spectra

To completely characterise a material’s reflectance spectrum measurement of both
the diffuse and directional reflectance components are required. These components
are highly wavelength dependent. When surface irregularity or roughness is less
than the wavelength of light specular reflections dominate and vice versa when
surface irregularities are randomly orientated and larger than the wavelength of
light being considered. Generally most natural materials are diffusely reflecting in
the visible region of the spectrum. [10]

While many of the materials discussed in succeeding sections can demonstrate
significant specular or directional reflectance components, the scope of this study
has been limited to diffuse surfaces only. The primary focus is on the material’s
spectral colour rather than its surface texture. This avoids the difficult and somewhat
problematic determination of Bi-directional Reflectance Distribution Functions
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(BRDF) needed to characterise the directional components of a material’s reflectance
spectrum.

As fundamental physics determines that molecules can only absorb and emit light at
discrete quantised levels, it follows that the spectral absorption features of any given
material are clearly determined by the material’s chemical composition. The position
and intensity of these features can therefore be used as a ‘fingerprint’ to aid in
materials’ identification. These absorption features arise from electronic, vibrational
or rotational transitions within a material. The electronic absorption of chlorophyll
in the visible band (0.35 to 0.75 um) and the vibrational stretch overtone of water at
1.38 um are two significant examples of these processes. More extensive
fundamental discussions in this area can be found in many good spectroscopy texts,
such as Banwell [11] and more applied discussions in much of the remote sensing
literature. [12]

2.1.1 Comparison of Laboratory and Field Based Spectra

To determine the accuracy and robustness of the spectra collected in the field
comparison was made with those obtained from the same material in a controlled
laboratory environment.

A white canvas sample was employed in this comparison, although any of the target
or background classes would have been suitable. The material used was a heavy
grade polyester/cotton canvas blend. No obvious glint or ‘shiny’ reflection was seen
when viewed from a wide variety of angles and different illumination sources, with
the sample maintaining its uniform matt colour. The weave of the fabric was
expected to afford only minor (if any) variation in directional reflectance properties
of the material over the wavelength region of this study.

Field based reflectance spectra for this study were obtained using an Analytical
Spectral Devices, Inc, (ASD) FieldSpec’FR spectroradiometer. This device is
available to DSTO for a two week period each year as part of a collaborative
agreement between a consortium comprised of DSTO, CSIRO, the University of
New South Wales, the University of Wollongong, the Australian National University
and the Charles Sturt University. This compact portable system allows rapid spectral
sampling from 0.4 to 2.5 pm. The full-width-half-maximum (FWHM) resolution is 3
nanometres (nm) for the region 350 - 1000 nm and 10 nm for the region 1000 —
2500 nm.

A Varian Cary 5E UV-Vis-NIR spectrophotometer with a diffuse reflectance
accessory was used to collect spectra in the laboratory for comparisons. This device
was calibrated against a known HALON (Poly-Tetra-Flouro-Ethylene) standard. The
standard’s reflectivity was greater than 99% in the 350 to 1800 nm region and greater
than 96% for the remainder of the useable spectral range between 200 and 2500 nm.
The data was acquired at 1 nm sampling intervals with a spectral bandwidth of
2 nm. While this device can acquire spectra at much higher resolution (down to
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0.02 nm data intervals), the data presented was satisfactory to allow for a comparison
with the field-based data.

The measured reflectance values were recorded relative to standard reference plates
and were not corrected to absolute values. The reference plate used in the laboratory
was measured to have approximately 2 to 3% greater reflectance than that used for
the field based measurements, presumably due to soiling and environmental
exposure of the latter. This bias is expected to result in a small increase in the
relative reflectance values measured in the field, but is not expected to be significant
when compared to other sources of variability.

Two sets of field spectra of the white canvas were collected using the ASD, each set
comprised, 4 and 7 spectra respectively. The first set was collected with viewing
angles close to nadir, with the reference panel placed at the same position from the
collection optics as the sample. The second set was taken from a variety of viewing
angles, with the reference panel not always in the same position as the white canvas
target. This second scenario was more representative for the collection of field
spectra of the more complex targets due to the often, limited access to, and variable
orientations of these targets and backgrounds.

Several spectra were recorded with the Cary instrument under controlled laboratory
conditions. The mean values of these measurements and the ASD field
measurements are illustrated in Figure 2.1. The Cary based laboratory spectra were
uniform and displayed only minor variability between spectra. The average results
accurately represented the majority of the data collected.

100 -
90 -
80 1
70 -
60 -
50 -
40 4

Field data, set 1 - 4 samples

Field data, set 2 - 7 samples

Percentage reflectance

e |_aboratory data

Wavelength (um)
Figure 2.1. ASD Field spectra and Cary 5E laboratory spectra of white canvas.

The position of spectral features from both ASD and Cary spectrometers are
consistant, although some anomalies are observed in the field based data. Centered
at 1.38 and 1.85 pm are regions of considerable noise. This is associated with strong




DSTO-TR-0807

attenuation of solar radiation due to atmospheric water vapour. The very small
signals collected in these regions are swamped by the ASD’s intrinsic system noise.
Water vapour absorption is also expected to influence the spectra from
approximately 2.35 to 2.5 um, as well as less significant features centered around 1.14
and 0.94 pm. The spectral data becomes progressively noisier at longer wavelengths.
This is due to normal reduction in radiance of the illumination source (namely the
sun) resulting in a reduced signal from the sample, and hence a greater contribution
due to the baseline system noise. A sharp edge was also observed in several of the
individual ASD spectra near 1.0 um, this feature marks the change-over point
between the ASD’s detector systems, as they were not properly matched for all the
data presented here. This has the potential to introduce false results in this region
for this data. Generally, careful system optimisation during data acquisition should
avoid this problem.

While the mean of the field-based spectra in set 1 displayed satisfactory agreement
with the laboratory-based results, individual spectra differed by up to 15% of the
mean in selected bands. This variablity is illustrated in Figure 2.2. The reflectance
measurements recorded in set 2 of the field data were all greater than the lab based
data. This trend was seen for other target materials. Due to the different geometry
used in set 2, the propagation path between target and the ASD was greater than that
between the reference and the ASD, and the target was viewed at an oblique angle
while the reference was held normal to the collection optics. These variations
resulted in greater along path scattering and a target that was effectively larger with
respect to the reference than the set 1 case. Both of these differences were expected to
increase recorded reflectance values.

100 ~
90 A
80 -
70 -
60 -
50 -
40 | ——Field data - set 1
30 1 e Figld data, mean - set 1
20 -
10

0

Percentage reflectance

0

Wavelength (pm)

Figure 2.2. Variability in set 1 of the ASD field spectra of a white canvas sample

Overall the field-based data displayed significantly greater variability than the
controlled laboratory data. While in principle the reflectance of a material is fixed
and invariant of external factors, this study illustrates the dynamic and variable
nature of field spectroscopy. It is important to acknowledge parameters including
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the time of day, solar zenith angle, azimuth angle of the detector, aspect of the
reflecting surface, nature of surrounding vegetation, distance of operator from
collection aperture, etc., can and often do have significant effects on the recorded
spectra. [12,13,14]

In summary, the reflectance spectra employed in this report cannot be assumed as
absolute values for these materials. It appears target and background spectra display
similar biases and the positions of the spectral features are accurate; this indicates
meaningful comparisons are still possible. The assessment of target detection ability
used in this report was based on exploiting the qualitative characteristic spectral
‘finger print’ of a target material with respect to background rather than a
quantitative analysis approach.

2.2 Atmospheric considerations

Spectral radiant energy passing through the earth’s atmosphere is subject to
absorption, emission and scattering by the atmosphere’s constituents. The extent to
which this occurs is dependent on local atmospheric conditions including the
variability and characteristics of aerosol and particulate materials, and the
wavelength of light being considered. Thus a remotely sensed spectral radiance
signature of any target will have its character significantly modified of due to the
influence of the atmosphere. This modification is independent of the target or the
background properties.

Any simulation software that attempts to ‘forward model’ the predicted spectral
radiance at a sensor must include all the pertinent atmospheric parameters discussed
above, along with accurate sun, target and sensor viewing geometry. The package
must also incorporate reflectance data of the materials of interest, at the spectral
resolution commensurate with the sensor and the spectral features of targets and
backgrounds.

The Modtran [15] (Moderate resolution code for Lowtran) software developed by the
now Phillips Laboratory/Geophysics Directorate has been demonstrated as suitable
for atmospheric propagation and radiance modelling. Modtran is one of the most
widely distributed and validated codes available [15-18]. The Mosart (Moderate
Spectral Atmospheric Radiance and Transfer) package is another candidate. This
code has evolved from similar precursors as those of Modtran, with many in-built
features and profiles being conserved. Mosart includes all the Modtran atmospheric
features and is easily applied to any arbitrary line-of-sight calculations as required
for this study. Both Modtran and Mosart are 1 cm1 ‘spectrally-binned” band model
codes as discrete from the high-resolution ‘line-by-line’ alternatives like Fascode
[18,19] that consider all molecular absorptions. Both Modtran and Mosart have a
maximum defined resolution of 2 cm-.. This resolution is well in excess of what is
required for modelling in hyperspectral space. For example, 1 cm at 1.0 pm
corresponds to a resolution of approximately 0.1 nm. A spectral resolution of about
10 nm and a spectral sampling interval of approximately 2 to 3 nm has been
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specified as a minimum requirement for hyperspectral remote sensing applications
in the 0.4 to 2.5 pm wavelength region. [20]

The units of wavenumber or reciprocal centimetres (cm) are often used by
spectroscopists and can be converted to wavelength by simple inversion and
multiplication by the appropriate scaling factors.

It is noted that neither Mosart nor Modtran provide information about any statistical
variability that would be encountered under normal operational conditions. The
source of this variability is complex, with parameters including pressure,
temperature, humidity and visibility all contributing. This variance is difficult to
model because of the many undefined variables. Thus experimental measurements
would provide the ideal source of this variance data. Such experimental
measurements would also provide validation (or otherwise) to the modelling
predictions.

2.2.1 Comparison between Mosart (Hypex™) and Modtran (ver 3.5)

Atmospheric propagation and radiance modelling was performed using the Hypex™
(Hyperspectral Exploitation Toolkit) software package. This package has been
developed by Photon Research Associates, Inc.. It uses an embedded version of
Mosart 1.41 to perform the atmospheric radiance and propagation calculations. The
toolkit allows a ‘user friendly’ exchange of reflectance data and radiance results.

With Hypex (Mosart) being a relatively new package, comparison with Modtran was
performed to provide an indication of the consistency of the radiance results
generated. The Modtran code has been regularly applied to ‘point-to point’ (ie line-
of-sight) atmospheric radiance and transmission modelling and has been
demonstrated to show agreement with experimental results [18], thus ideally close
correlation with Mosart is desired. While it is acknowledged this approach does not
provide an independent verification, it is still a useful test within the limits of the
code’s accuracy.

Many of the atmospheric composition and climatic characteristic profiles used in
these codes are conserved. This presents a relatively easy input selection to allow for
comparisons to be made. Basic input variables were set to ‘Tropical Annual’
constituents profile, ‘Rural’ boundary layer aerosol profile and a meteorological
range of 23 km. The Sun’s zenith angle was calculated to represent a site in Darwin
at 12:00 noon local time on January 1. The viewing geometry was chosen to be 2.5 km
looking at nadir and was corrected for surface elevation. A 100% diffuse reflecting
surface, at ambient temperature was employed as the target. The results of this test
are illustrated in Figure 2.3.




DSTO-TR-0807
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Figure 2.3. Comparison at the sensor between Moditran ver3.5 and Mosart 1.41
(Visibility 23 km rural aerosols and tropical atmosphere)

The results displayed in Figure 2.3 depict radiance differences between the two
codes, with the discrepancy more pronounced at shorter wavelengths. The
absorptive structure of the spectral radiance data appears well correlated; thus the
disparity was expected to be associated with how the codes deal with aerosols and/or
scattering computations. Further modelling was conducted to test this conclusion.

While Modtran allows computations to be performed in the absence of aerosol
effects, Mosart does not. To circumvent this problem an unrealistically high
boundary layer visibility of 200 km was employed for these calculations. Generally
aerosol effects in the troposphere and stratosphere are negligible in comparison to
the 0-2 km boundary layer aerosols. They are therefore not expected to contribute
substantially to the overall attenuation in this investigation and hence do not need
modification. This assumption is supported by the data depicted in Figure 2.4, where
agreement is obtained between the atmospheric molecular absorption predictions
generated by the two codes.

As the aerosol profiles used in each of the codes are identical, the discrepancy is
associated with the scattering routines. Correspondence with the code suppliers has
indicated their awareness of these differences [21,22] and it is expected that the later
versions of this code will clarify this discrepancy. It was suggested that caution
should be employed when using results generated employing Mosart ver 1.41 due to
the uncertainty of their accuracy. [23]
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Figure 2.4. At-sensor radiance comparison between Modtran3.5 (No Aerosols) and
Mosart (visibility 200 km)

The Mosart code normalises the atmosphere’s molecular species concentrations
when accounting for trace constituents, (Modtran does not) and also employs a
modified Koschmieder formula [15] that is stated to more accurately describe hazy
scenarios. Thus while it is suggested Mosart may be more reliable in poor visibility
conditions [22] further validation is clearly required.

It has been reported the Modtran 3.7 and the Mosart 1.60 beta codes have
demonstrated a transmittance difference of less than 0.01%, a single scatter
difference less than 10% and a multiple scattering difference somewhere between
20-50% [22]. As the calculations presented in this report are based on a 23 km
standard clear visibility scenario, the effects of multiple scattering on results will be
negligible.

In summary, the predicted ‘at-sensor’ spectral radiance values must not be
considered as absolute values. The only way to address these validity issues is to
conduct ‘in-the-field’ investigations to determine which code, conditions and
parameters best describe actual operating scenarios. At present these validity
measurements are beyond the scope of this investigation. Even with the problems
identified above it is still possible to make comparisons between targets and
backgrounds, based on these predictions. This is because data generated for both
targets and backgrounds will have the same bias due to atmospheric effects.

2.2.2 Comparison of “Atmospheric Model Profiles’ and Site Specific Data

A comparison was made between the Mosart predicted ‘at-sensor’ radiance values,
incorporating site specific pressure, temperature and humidity vertical atmospheric




DSTO-TR-0807

profiles for Darwin (as obtained from the Bureau of Meteorology - National Climate
Centre), and that from the in-built ‘Tropical’ profile. Only relatively minor
discrepancies were observed between the results. While this test indicates that the
small differences in the atmospheric constituent profile is not a dominant factor
affecting modelling accuracy, significant changes in the results are expected under
the influence of localised humidity, visibility and aerosol variability. These
properties vary with time for any given site and are difficult to model precisely.

In conclusion, it is acknowledged that some of the specified parameters, including
default atmospheric constituent and aerosol profiles may not be absolutely accurate
for conditions expected in Darwin on the first of January. However, it is still
possible to make worthwhile comparisons between targets and backgrounds, by
application of these representative profiles and models, along with site specific
meteorological information.

2.3 AVIRIS Sensor Simulation

After simulating ‘at-sensor’ spectral radiance values for a variety of targets and
backgrounds these outputs were then converted into AVIRIS sensor outputs. The
aim of this process is to see if the targets can be detected by a “state of technology’
sensor.

The AVIRIS sensor was chosen as a representative example of a current leading-
edge hyperspectral system. An advantage of using this system is the availability of
pertinent sensor characteristics needed to model its performance. Parameters such as
spectral response functions, band position, band-width, Noise Equivalent Radiance
(NER) and radiometric calibration coefficients were all available in the open
literature, or from the Jet Propulsion Laboratories, USA (JPL). An altitude of 2.5 km
was employed for the simulation. This altitude affords a ground based pixel size
approximately commensurate with the primary targets (small boats and vehicles) of
interest.

The simulation of AVIRIS data was accomplished by passage of the simulated
radiance spectra through a two-stage algorithm. Radiance data was firstly convolved
with the sensor’s spectral response functions. The spectral response function for all
AVIRIS bands was assumed to be Gaussian with the band-pass fully defined by the
band-centre positions and their Full-Width-Half-Maximum (FWHM) values. Using
this band-pass information the total energy (W/cm2/sr/um) per channel was derived
from the modelled radiance spectra. The convolution process is graphically
demonstrated in Figure 2.5.
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Figure 2.5. Example of sensor response function integrated with an at semnsor
radiance spectra for a military vehicle, function centred at 0.42 um.

The radiance data generated from the Mosart software (Hypex) had a spectral
sampling interval of approximately 3nm, which is significantly greater spectral
resolution than the AVIRIS sensor’s Gaussian band-pass of 10nm. This provides in
excess of eight sampling points for each band pass and is satisfactory for
hyperspectral analysis [20].

In the second stage, the integrated radiance signal (total in-band energy) for each
channel was converted to digital number (DN) values by the application of known
radiometric calibration coefficients. This process was applied to all 224 AVIRIS
channels from 0.4 to 2.5 pym.

3. Analysis of Spectra For Band Selection

3.1 Overview of Single and Multiple Band Spectral Analysis for Target
Detection

For single broadband sensors, target detection against background clutter relies
primarily on target intensity and textural contrasts. Shape also plays a major role
and hence high spatial resolution becomes a requirement to detect, recognise and
identify targets. In contrast hyperspectral sensing aims to exploit the spectral
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differences between a target and the clutter to aid in detection and (potentially)
recognition. While target-to-clutter ratios (I'CR) may often be low in many or all
hyperspectral bands, analysis of two or more bands simultaneously can often
significantly increase the TCR. This can provide improved detection of targets with
a reduced false alarm rate, with an added advantage of often-lower spatial resolution
requirements. {1]

The primary method of hyperspectral signature processing employed in this report
is based on single spectral-band processing. The current analysis has been aimed to
determine a ‘first-cut’ likelihood of discriminating targets from backgrounds. While
there is scope for complex multiple band (multivariate) data analysis when
processing this hyperspectral data, only a single case has been provided as a
demonstration of this approach. Due to the small number of signatures available in
this analysis a robust multivariate approach was not possible.

This single band approach is aimed to allow for ‘fast filtering’ of data sets. The aim
is to identify regions of interest before more complex multiple band procedures,
with their corresponding overheads in time, computing and resources are employed.
As hyperspectral sensors have the potential to generate massive volumes of data,
this approach has the advantages of significantly reducing the analyst’s workload by
targeting spectral bands of high utility while ignoring the less useful chaff.

3.2 Single Band Analysis

For initial single band processing where the target or background is larger than a
given pixel’s instantaneous-field-of-view (IFOV), the target-background radiance
difference can be defined by equation (3.1){1}

(Lr —Ly )Alrovf’_m

d-

AL = (3.1)

Here Lt and Lg are the target and background radiance values, respectively, L*
denoting ‘at-sensor’ radiance values Arov the area of the IFOV, T the atmospheric
transmission coefficient and d the distance from the sensor to the scene. As the
Mosart atmospheric propagation and radiance code computes the radiance at the
sensor by taking into account the variables in (3.1) we can simplify the equation to

AL =L -L (3.2)

The effect of system noise on the detection ability of a given target can then be
defined by the signal-to noise ratio (SNR) below [1]

o]

SNR = ——
NER

(3.3)
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Where NER is the spectrally dependent noise-equivalent-radiance of the sensor
system (refer forward to section 4.8).

This SNR value provides a measure of target detection ability assuming that there
are no variations in the signatures (radiance values) received from targets and
backgrounds. This assumption does not hold true ‘in-the-field” and for that reason a
‘target-to-clutter-ratio (TCR?) can be defined that includes this variability. This
parameter is described as

(AL’ )

TCR =——__
(07 +0})

(3.4

Here ALS is the difference between the mean signatures of the background and
target classes, and or and op are the sample standard deviations of the background
and target classes. The TCR? is a measure of the separability between target and
background and it is the same measure as Fisher's criterion [24] for class
separability. The relation (3.4) assumes that the target and background samples are
independent and are normally distributed. [1]

While the equations described above deal with at-sensor radiance, an entirely
analogous protocol can be employed in processing measured reflectance data or the
digital outputs of a given hyperspectral sensor.

3.2.1 Dealing with Small Sample Sizes

When the number of samples for targets or backgrounds employed in an analysis is
small (<30), which is the case in this study, an analysis that does not make allowance
for the effects of sample size may be inaccurate. To account for this small sample
case a modified TCR? measure can be derived as described by

sY
TCRs * = (AL J - (3.5)
[(n, —I)ST' +(11B —l)s*B':'

(nT +ny —2)

Where nrand np are the number of samples in the target and background classes and
st and sp the target and background sample standard deviations respectively. This
equation provides weighting based on the number of samples in each class. The
TCRs? statistic is implicitly based on the assumption that the target and background
distributions are Gaussian or close to Gaussian: under this assumption the TCRs?
statistic will have an approximately “Chi Square” distribution.
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Even with this weighted approach ideally sample sizes greater than 30 should be
employed (if available). This allows more accurate determination of statistical
estimates.[25]

The TCRs? measure is particularly useful in the initial data analysis. It provides a
fast means to determine and identify spectral regions of interest for target detection.
This information can then be employed in alternate approaches to allow for
determination of performance indicators such as receiver operating characteristic
(ROCQ) curves.

3.2.2 Likelihood-Ratio Detection

With the desire to extend beyond the TCRs? analysis, an alternate ‘likelihood-ratio
method’ approach can be employed ideally after specific regions of interest have
been identified. This approach requires an assumption of both the target and
background displaying a Gaussian distribution, and provides a well-defined
solution for ROC curves. A more formalised description of the approach employed
in this report can be found in the ‘Military Utility of Multispectral and
Hyperspectral Sensors’ prepared by Anderson et al [1].

In this approach a target or background population can be described by the
Gaussian distribution function (3.6)

_HX-u)
el o (3.6)

1
(x) =
T9= s

Where 1 and o are the mean and standard deviation respectively.

If a target and background population can be described by the functions f(x|T) and
f(x|B) then a likelihood-ratio test, can then be applied to determine threshold levels
as illustrated by the relationship [24]

fAT)
fB) <

threshold (3.7)

This ratio returns a value that can be employed as a threshold to determine a
probability of detection (Pd) and probability of false alarm (Pfa). The Pd can be
calculated by integrating f(x | T) for all values of x for which the ration in equation
3.7 is greater than or equal to the threshold, with the Pfa determined by integration
of f(x|1B) over the same range. If this process is applied over an appropriate range of
thresholds, a Pd verses Pfa ROC curve can be derived.
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3.3 Multiple Band Analysis

The use of multiple spectral bands in a given target and background population
provides the potential for a more powerful analysis approach to the single-band
processes outlined earlier. This approach is analogous to that presented in Section
3.2.2 and is expected to significantly enhance target detection performance when the
multiple bands selected are significantly correlated, as they often are. [1]

This approach can be readily extended to include whatever number of bands is
required or available. The only limiting factor being the number of samples
available to estimate statistical parameters such as mean vectors and covariance
matrices of materials: If N bands are chosen at least N(N+1)/2 samples are needed.
This requirement for large spectral libraries often provides limits on the number of
spectral bands that can be effectively employed, as it is often difficult to obtain such
large numbers of spectra for materials.

A covariance matrix can be assigned for a given target or background population
comprising k bands as illustrated

6, O, .. O,
0, Oy

=C (3.8)
G‘l O-kk

A population distribution function analogous to equation (3.6) can then be assigned

for both the target and background. This probability distribution function is given
as

P

-l;r,x—u)’(“'cx—y i

f(x)= —E———e : (3.9
2rm)* I1C

Here X is a spectrum (vector) of N bands, C is the covariance matrix of X, and p is the
mean vector. |C| is the determinant of the covariance matrix C. The equivalent of

the TCRs? of (3.5) in multivariate space is given by the Mahalanobis distance [26,27]
as described by equation (3.10).

) C,+C,
TCR® = (uy — ut B)I( r? J (ur - 1) (3.10)

Here pr and pg are the mean vectors of target and background and Cr and Cs the
covariance matricies of target and background respectively. A likelihood-ratio test




DSTO-TR-0807

can be performed on chosen target and background distributions, and a Pd and Pfa
determined for each selected threshold value.

An analysis is presented for a two-band example; the results are presented
graphically in Section 4.5. The primary difference to the single band analysis being
the integration was performed over two ranges instead of one. This can be visualised
by thinking of integrating over volume rather than area.

4. Results and Discussion

The TCRs? and single and multiple band Likelihood-Ratio analyses presented in
succeeding sections are based on simulated AVIRIS digital number values.

4.1 Target and Background Reflectance Spectra Comparisons

All the reflectance data used in this report were collected using the ASD
spectrometer in the field. Issues relating to acquisition of these spectra can be found
in Section 2.1. The mean reflectance spectra of the materials investigated are all
illustrated in Appendix A. These targets and background are a preliminary set, and
were selected to represent three main groups. The first group is a set of terrestrial
based targets (vehicles and camouflage), the second is a variety of small boats
(littoral targets), and the last is a set of natural backgrounds.

From a cursory examination of the reflectance data, many spectral features can be
identified, and at a first glance, many features should be exploitable for spectral
detection and identification. Spectral regions where the materials are strongly
absorbing or highly reflecting are clearly evident, along with regions where there
are large reflectance changes over small spectral ranges. These rapidly changing
‘edge’ regions are also often used for identification. The positions of some of these
spectral features are summarised in Table 4.1.
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Table 4.1. Spectral features of targets and backgrounds

Target/Background Spectral Description
position (nm)

Military . 2hicle 410, 550 Peaks corresponding to
blue and green
components in paint

750 ‘red edge’ position of
paint
810 NIR reflectance peak

Green camouflage 810 ‘red edge’ position of
material

Red vehicles 650 Red reflectance peak
characteristic of material

Blue inflatable boat 470 Peak due to blue
component in paint

Eucalypt 460, 550 Peaks associated with
chlorophyll and other leaf
components

720 Chlorophyll ‘red edge’
1450 Liquid water absorption

While not all the significant spectral features have been highlighted, just from the
data presented many of these materials can be identified based on colour. For
example, with lower spectral resolution data, (10’s of nm) we can assign whether a
target is blue or red based on the peak/edge features at 470 and 650 nm respectively.
At higher resolution (5 to 10 nm) it should be possible to identify the difference
between the green plant backgrounds and green paint/green camouflage based on
the characteristic green reflectance peaks at 540-550 nm for targets and 560 nm for the
vegetation background. The chlorophyll ‘red edge’ of these plants at 720 nm as
compared to the ‘man-made’ targets 750/810 nm features could also be employed to
discriminate between the classes.

Not only are peak and ‘edge’ reflectance positions informative but absorption
positions also provided considerable information about material composition. In the
cases presented, mineral/man-made objects and live plant matter are clearly
distinguishable. This is based on the presence or lack of liquid water absorption
features at 1450 nm. This is expected to be useful in detecting camouflage designed
to imitate vegetation, for as a general rule, these types of man-made materials
seldom (unless wet) have liquid water absorption features.

The noise regions in the field-based data, centred at 1380 and 1870 nm, do not affect
the results presented. This is due to their coincidence with the atmospheric water
vapour absorption bands as addressed in Sections 2.1 and 4.2.
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While an understanding of the reflectance spectra of targets and backgrounds and
their associated underlying features is important, this is not what a hyperspectral
sensor ‘sees’ or provides as outputs. Thus the analysis forming the basis of this
report employed radiance values converted to AVIRIS sensor digital numbers
(DNs), to determine whether it is possible to discriminate between the targets and
backgrounds.

4.2 Comparison of Target and Background at Sensor Radiance Values

The Mosart (Hypex) software was used to simulate at sensor radiance data from the
reflectance spectra of the targets and backgrounds displayed in Table 1.1 (and
illustrated in Appendix A). The results discussed throughout this Section are based
on the following geometry, location, time and atmospheric conditions.

Sensor height above the target 2.5 km looking at nadir

IFOV 2.5 m diameter (1 milli-radian)

Illumination Source Solar (direct and scattered)

Spectral range 400 to 2500 nm

Spectral sampling interval 3-4nm

Atmosphere Climatic model Tropical (Annual)

Aerosol profiles (boundary layer) Rural

Meteorological range 23 km

Geographical Location S$12:25°, E130:53°; Darwin,
Northern Territory.

Time (GMT) 3:33.0 hrs (12:00 noon local time)

Month/Day January 1.

As the second stage of the simulation process, all radiance spectra were converted
into AVIRIS digital number signals, as described in Section 2.5. The AVIRIS DN
values, generated for each target or background are illustrated in Appendix B.

The influence of the atmosphere is clearly illustrated in these results. Strong
absorption bands centred at 094, 1.14, 1.38 and 1.87 pum (primarily due to
atmospheric water vapour) result in the extinction of the sensor signal in these
regions. The depth and width of these bands are dependent on the atmospheric
water vapour concentration and hence relative humidity. The higher the relative
humidity the greater the width and depth of the absorption bands and hence the
reduced likelihood of detecting spectral features of targets or background near the
shoulders of these bands.

The results presented are based on an at-surface relative humidity of 85%,
representative of tropical Australia in January (when it is not raining). Under these
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conditions degradation in the ability to detect liquid water absorption centred at
1.45nm in the vegetation samples is observed, due to the adjacent 1.38 pm water
vapour band overwhelming this feature. While not fully examined, an improvement
in the detection of this feature is expected during drier seasons.

Many of the spectral colour features seen in the reflectance spectra can be identified
in the simulated AVIRIS DN outputs (refer to Appendix B). Targets such as the
white fibreglass boat can be identified as a bright target (particularly in the visible
region - 0.4 to 0.75 pm). Similarly the chlorophyll ‘red edge’ features at 720 nm
characteristic of the live vegetation samples can be seen and used for detection
purposes. It becomes progressively more difficult to identify targets and
backgrounds purely by visual inspection of the data when the AVIRIS DN output
features correspond to only small absorption or reflectance features. The blue boat
features at 470nm can be identified with priori knowledge of what to look for, but to
discriminate between the green vegetation, green camouflage and military vehicle
would be difficult using the reflectance features described in Section 4.1. Thus while
dominant spectral features appear detectable, there is a low likelihood of identifying
‘finger-print’ reflectance features by simple visual inspection.

It is clear further data analysis and suitable target detection algorithms and post
sensor processing techniques must be employed to take full advantage of the
spectral information a hyperspectral sensor’s output is known to contain. It is with
these topics and similar performance limiting factors the succeeding sections are
concerned.

4.3 Selection of Spectral Bands ~ TCRs2 Results

The TCRs? analysis described in Section 3, has been applied to estimate the degree
of difference between each pair of target and background classes chosen from those
appearing in Table 1.1. Graphical representations of these analyses can be found in
Appendix C. Analysis provide a case-by-case guide to the spectral regions that
afford separation between target and backgrounds.

The obvious and desirable progression of the above analysis is the identification (if
any) of spectral bands that provide separation against all backgrounds. The ability
to discriminate a target from all backgrounds will be set by the background that
defines the lower limit of the TCRs? separation. Thus a minimum TCRs? was
determined for individual targets against all backgrounds, with the results being
summarised in Appendix D. The lower limit on these graphs was set to one for
display purposes. A TCRs? of unity or less indicates targets and backgrounds are
effectively indistinguishable if only a single band is being used to discriminate
between them. Although it may be possible to achieve acceptable separation with
multiple band analyses even when any individual band among those being used has
a TCRs? of less than unity (see Section 4.4 and 4.5).
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The terrestrial and littoral target classes were considered as mutually exclusive data
sets for this study. The littoral targets comprised the aluminium dinghy, blue rubber
boat and the white fibreglass boat targets. The green camouflage, red vehicles,
military vehicle and white vehicles were all classified as terrestrial targets. The
spectral regions with the largest TCRs? value and hence greatest target/background
separability were expected to be the most likely i allow target detection.

4.3.1 Littoral Targets

The spectral region between 0.4 and 0.5 pm has a superior target and background
separation than other regions, for all three littoral targets. The magnitude of TCRs?
measure is also at its largest for all three targets in this region. A small region
between 0.55 and 0.62 pm may also be suitable, but no other region of the spectrum
exhibits significant separation of all three targets from the backgrounds. Thus for
this modelled scenario the recommendation for single-band target detection is to
employ a sensor that operates in this spectral region.

From this data it also appears possible to discriminate between individual targets.
Between 1.50 and 1.65 pm only the white fibreglass boat demonstrates significant
separability against background. A region between 2.12 and 2.18 pm displays a
TCRs? measure of similar magnitude only for the aluminium dinghy. Thus on the
assumption this magnitude of separability (of the order of 10 or greater) extrapolates
into a high probability of target detection, then a sensor system operating in the
three spectral regions identified should be able to detect and discriminate all three
targets using ‘single-band analysis’ methods. This approach is summarised in Table
4.2.

Table 4.2. Example of hyperspectral band selection to detect littoral targets against

all backgrounds
Band Band Blue White Aluminium
Number | Position Rubber Fibreglass | Dinghy
(um) Boat Boat Detected
Detected Detected
Band 1 0.40-0.50 Yes Yes Yes
Band 2 1.50-1.65 No Yes No
Band 3 2.12-2.18 No No Yes

4.3.2 Terrestrial Targets

For the modelled terrestrial scenario no single spectral region shows significant
separability for all targets and background. This example demonstrates the need for
multiple bands to solve the target detection task. In this example it is assumed a
TCRs? measure in excess of two to three affords satisfactory ‘single-band analysis’
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probabilities of detection. This is not an unreasonable assumption as will be
demonstrated in following sections.

As with the littoral example, regions displaying separability from background can
readily be identified. Using this information a matrix of potentially suitable spectral
bands can be constructed, and by following a process of elimination a suitable suite
of bands and positions can be selected to achieve the detection and identification
task. A summary of this approach is depicted in Table 4.3

Table 4.3. Example of hyperspectral band selection to detect terrestrial targets
against all backgrounds

Band Band Military White Red Green
Number Position Vehicle Vehicle Vehicle | Camouflage
(um) Detected Detected Detected Detected
Band 1 0.40-0.43 Yes Yes No No
Band 2 0.45-0.52 No Yes No No
Band 3 0.60-0.64
or No Yes Yes No
0.68-0.71
Band 4 1.48-1.54 No No Yes No
Band 5 2.13-2.25 No No No Yes

4.3.3 Selection of Spectral Bands - Summary

The examples presented demonstrate that the individual band’s position and
band-pass are dynamic, and depending on target and background, the separability
characteristics can vary significantly. Ideally a given band’s band-pass should be set
as wide as possible without losing hyperspectral information. This is because as a
‘rule-of thumb’ the wider the band-pass the greater the collected signal and the
better the system’s SNR performance. The examples presented were primarily
designed to demonstrate this band selection approach.

These examples confirm the intuitive expectation of a greater number of sensor
bands being required for target detection and identification in scenarios with greater
numbers of targets.

These cases provide examples of how it is possible to develop ‘training sets’ of
recommended spectral bands for application in mission planning. For example, if a
surveillance or reconnaissance mission is planned over a littoral area, then based on
the above TCRs? results, the analysis of data in the spectral band between
2.12-2.18 um should provide an indicator of the presence of an aluminium surface
against the vegetation backgrounds. Hence a sensor operating in this region would
be expected to be operationally superior for this role.
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While the results presented are encouraging, it must be emphasised they are
preliminary, and are based on very limited data sets. Clearly in a meaningful
operational role the number of targets and backgrounds will be considerably larger.
Even so, when coupled with the use of appropriate ‘training-data’ this approach is
expected to have significant potential to enhance the ADF’s surveillance capability

4.4 Single Band Probability of Detection and False Alarm ROCs

With the desire to extend beyond the TCRs? approach, an example comprising a
green camouflage target and an eucalypt background was selected. ROC curves to
determine target detection probabilities (Pd’s) and corresponding false alarms (Pfa’s)
were then calculated for this case. This case was considered to be of relevance to
military operations in Northern Australia. This example is the simple case of a pure
target pixel alongside background. The TCRs? determined for this example is
illustrated in Figure 4.1. Other examples can be found in Appendix C.

100 -
90 -
80 -
70 4
60
50 -
40
30
20 - Band 34 Band 104

10 { Band 4 A ﬂ
0 j\ ; i .

0.4 0.9 1.4 1.9 2.4

Band 184

TCRs2 Measure

Wavelength (pm)

Figure 4.1. TCRs? values for a green camouflage target and eucalypt background

Four of the 224 possible AVIRIS bands (Band 4, 34, 100 and 184) were chosen for
further analysis. Table 4.3 provides a summary of information about these bands.
The bands were selected to illustrate the differences in the ROC curves over the
range of TCRs? values obtained for the test case.

The ‘likelihood ratio detection’ method discussed in Section 3.2.2. was applied to
each of these four bands, with the ROCs generated illustrated in Figure 4.2.
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Figure 4.2. ROC Curves for AVIRIS bands 4, 34, 104 and 184 for a green camouflage
target and eucalypt background.

From these results the performance differences between each band can clearly be
seen and determined. The last column in Table 4.4 provides information about the
approximate Pfa for a Pd of 90%. The Pfa is only approximate due to minor
interpolation errors.

Table 4.4. Data summary for AVIRIS bands selected for further analysis

AVIRIS Band Band TCRs? Pfa for
Band Centre (um) Width Measure 90% Pd
Number (FWHM) (approx.)
(um)

Band 4 0.399 0.00953 0.023 70%
Band 34 0.673 0.00831 8.7 7.8%
Band 104 1.324 0.01091 10.2 1.2%
Band 184 2.109 0.01078 81.5 >0.1%

AVIRIS Band 4, with its small TCRs? value (compared to other bands), has a
corresponding very poor ROC curve and hence a large Pfa for any given Pd. As was
expected this band is not suitable for use in single band target detection.
Alternatively, AVIRIS Band 184, with its large TCRs? has a ROC curve which
indicates a Pd of nearly 100% with very small Pfa values (see insert Figure 4.2). This
illustrates, as expected, that this band would be highly desirable to use for target
detection.

While the relationship between large and small TCRs? values and the corresponding
ROC curves is clear, more ambiguity exists in determining limits for Pfa’s/Pd’s using

24




TCRs? values when they are midway between these two cases. This problem is
evidenced in AVIRIS Bands 34 and 104.

AVIRIS Band 34 and 104 have similar TCRs? values (8.7 and 10.2 respectively) but
have significantly different Pfa’s (7.8% verses 1.2%) for a Pd of 90%. This indicates it
is difficult to infer what a band’s detection performance is based on the TCRs?
measures alone. This is supported by analysis of other AVIRIS bands. This result
relates to the different sample distributions in the target or background populations
in the different spectral bands.

This sample variance is illustrated in Appendix E where the sample distributions of
the green camouflage target and the eucalypt background used in the above analysis
are presented. Figure E.2 and Figure E.3 illustrates the distributions of target and
background (and hence overlaps) that lead to ROCs with different characteristics.
Even though the TCRs? values for band 34 is within 15% of Band 104, the sample
distributions have a greater overlap between target and background and hence a Pfa
6.5 times larger for a Pd of 90%. AVIRIS Band 4 displays overlap between the target
and background across most the sample distribution, and hence poor ROC curves,
while AVIRIS Band 184 has negligible overlap and a corresponding excellent ROC
curve.

While the solution to the ‘likelihood ratio detection’ method and the shape of
resultant ROC curves are dependent on the sample distributions of target and
background, the results presented illustrate that the TCRs? values can be used
(within limits) as a performance indicator guide. When TCRs? values are in excess of
10-15 there is a high likelihood of discrimination between target and background.
Corresponding ROC curves are expected to show low to very low Pfa’s for a 90% Pd.
With TCRs? values below 1-2, reduced separation and higher Pfa’s are expected. The
region with TCRs? values between 2-10 has the potential for target detection with the
Pfa’s being dependent on the sample distributions, with the potential for significant
detection performance variability.

4.5 Two-Band Probability of Detection and False Alarm ROCs

As outlined in Section 3.3, the advantages offered by hyperspectral sensors lie in the
simultaneous exploitation of multiple spectral bands to improve target detection
performance. This approach becomes necessary for more complicated multiple target
and background scenarios in which single-band performance is generally poor.

A two-band analysis is presented, for the green camouflage target and eucalypt
background example presented earlier. While this is a simple case where single
band detection is possible in several spectral regions, the prime purpose is to
demonstrate the performance enhancement possible by employing multiple bands.

AVIRIS Bands 4 and 34 were selected for the analysis. The approach outlined in
Section 3.3 was applied to these bands. The calculated 2-band target and background
sample distributions are presented in Figure 4.3. The minor contour irregularities
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seen (particularly for the green camouflage) are due to limitations of the plotting
procedures employed and do not affect the accuracy of the underlying analysis.
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Figure 4.3. AVIRIS Band 4 and 34, 2-band anaylsis sample distributions foragreen
camouflage target and eucalyptbackground. (greatestvalues near the
distribution centres)

From Figure 4.3 it is clear the target and background sample separation has
sigificantly increased when compared to the indivdual single band cases (see
Appendix E). This is manifest as a reduction in the overlap between target and
background sample distributions. ‘Likelihood ratio detection’ analysis was then
performed and the relevant volume was integrated to generate a ROC curve for this
analysis. This ROC is illustrated in Figure 4.4.
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Figure 4.4. ROC Curves for single and 2 band analysis of AVIRIS bands 4, 34 for a
green camouflage target and eucalypt background.
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By employing this 2-band approach the Pfa for a 90% Pd has fallen from 70% and
7.8% for bands 4 and 34 repectively to less than 0.2%. This performance
enhancement is even greater if more optimal AVIRIS bands are selected and/or the
number of spectral bands is increased beyond 2.

This example demonstrates the huge improvements in target detection, that are
possible by employing a 2-band analysis techniques. Thus multiple-band
techniques are expected to be required and offer demonstratable performance
enhancements when the surveillance scenario becomes more complex (and realistic)
with larger numbers of targets, more complex and varied backgrounds, and “sub-
pixel’ targets.

It is important to note that this case does not include the effects of ‘system noise” on
the detection performance, and is presented as a demonstrative example of muliple
band analysis techniques only. Some ‘system noise’ issues and their effects are
discussed in Section 4.8.

4.6 Target and Background Mixing

All previous analysis has made the assumption that the target or background of
interest is larger than the IFOV of a single pixel and hence would contribute 100% of
that pixel’s signal. A 2.5 m diameter IFOV was used in these, and subsequent
calculations, and for a majority of the targets discussed this ‘pure-pixel” assumption
could hold true.

This ‘pure pixel’ analysis was employed as it was reasoned if detection of a pure
target against a pure background was not possible, then it would not be possible
under less optimal scenarios. With the results generated in Section 4.3 and 4.4
indicating the potential for “pure pixel” detection, analysis was extend to include
scenarios where the target is smaller than the pixel’s IFOV. This was expected to be
operationally more realistic, where a target may occupy only a part of several pixels
rather than all of a pixel. The determination of the effective ‘sub-pixel’ target
detection limits can allow for a prediction of the greatest area a surveillance systems
may be able to provide effective surveillance over, based on detector array size and
viewing geometry.

The green camouflage target and eucalypt background example used in section 4.4
was used it this analysis. The target consisted of 5 spectra and the background 39
spectra. The approach taken was to apply simple linear mixing of the initial source
reflectance spectra to generate ‘mixed spectra’” with known percentages of target
mixed with background. ‘At-sensor’ radiance and AVIRIS DN outputs were then
predicted and a TCRs? measure calculated based on the ‘mixed spectra’ data, using
the procedures outlined in earlier sections.
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While it is possible to generate 195 different target/background mixture
combinations, for any given target percentage, the approach taken in this analysis
was to linearly mix the background mean spectrum with each of the 5 pure target
spectra. This maintains the same weighting (5 to 39) between target and background
in the TCRs? analysis, as was used in the ‘pure pixel’ case. This approach has
significantly reduced time and resource requirements and still provides information
on the effects of “target dilution’ on detection performance. It was assumed a pure
background pixel was available to compare this ‘mixed-pixel’ against. The results of
this analysis are displayed in Figure 4.5

100 - e 100% Target
90 - 90% Target
80 80% Target
70% Target
g 70 1 60% Target
& 60 50% Target
2 50 40% Target
g 40 | 30% Target
IS 3. =20% Target
10% Target
20 + 5% Target
A
0 : . e Ay o £ i) .
0.4 0.9 1.4 1.9 24

Wavelength (um)

Figure 4.5. TCRs? values for a green camouflage target against eucalypt background
from 100% Target (greatest value) sequentially to 5% target/background
mixture (smallest value)

Atmospheric propagation effects and the sensor’s spectral response characteristics
are both expected to play a role in modulating the reflectance data used in this
analysis. Thus while the results in Figure 4.5 appears to indicate a near linear TCRs?
reduction on the ‘dilution’ of target, a simple percentage comparison (to the pure
target case) was performed on several of these results, to quantify the influence of
these moderating factors. The results from this simple test are displayed in Figure
4.6.
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Figure 4.6. TCRs? Values percentage difference from pure target for 80%, 60%, 40%
and 20% mixtures of target in background

The results in Figure 4.6 demonstrate that the effects of the atmosphere and sensor
characteristics are not uniform across the spectral region of interest. It is also evident
that the performance degradation is more severe for lower percentages of target in
the ‘mixed pixel’.

These results indicate atmospheric propagation and sensor characteristics must be
taken into consideration when modelling a hyperspectral sensor’s performance, with
any conclusions drawn from an analysis based purely on reflectance possibly being
wrong. Atmospheric propagation effects will obviously depend on meteorological
conditions and sensor geometry, thus the influence of these parameters will need to
be determined for each individual operational scenario.

In summary while there are several complementing factors that reduce the ‘sub-
pixel” target detection ability, the separation between the ‘mixed pixel’ and
background is still the primary performance-limiting factor. Thus if the TCRs? is
still large (>10) then high Pd’s with low Pfa’s should still be expected. For example,
in the case presented, the spectral region between 1.95 and 2.1 um (ie. contains
AVIRIS Band 184) should still provide excellent target detection ability even with
the target comprising only 20% of the pixel. AVIRIS Bands 4, 34 and 104 are not
expected to be useful at this sub-pixel target level.

4.7 Geometry Considerations

Until now analysis has used a fixed time of day and sensor viewing geometry. This
scenario was chosen as it provided maximum incoming solar radiation, an
appropriate IFOV pixel size, and realistic deployment height for tactical and
reconnaissance EO payloads. To extend the performance investigations further,
analysis of the effects of altitude and time-of-day are presented.
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4.7.1 Altitude Effects

Using the modelling approach described in Section 3.2.1, the TCRs? measure was
determined for a test case employing the green camouflage target and eucalypt
background. This process was performed at altitudes of 2.5, 5, 10 and 20 km, all
looking at nadir. A target and background larger than a pixel’s [IFOV was assumed.
All other parameters were held constant.

The TCRs? separation measures for all altitudes were found to be nearly coincident
with less than 1% variation seen across all bands for all altitudes. While the ‘at-
sensor’ radiance and hence AVRIS DN outputs are observed to change with altitude,
both target and background are influenced in the same fashion and hence TCRs?
values and target detection performance remains constant with altitude.

Thus in summary, if the target and background experience the same influences due
to altitude, and spatial resolution or sensor noise are not limiting factors, TCRs?
values and detection performance is relatively altitude independent. As the majority
of meteorological influences are confined primarily to the ‘boundary layer’ (less
than 2 km altitude) contributions to atmospheric propagation variations from higher
altitude sensor deployment is expected to be less significant.

4.7.2 Influence of Time-of-the-day Changes

The approach used in Section 4.7.1 was employed to determine the influence of
‘Time-of-the-day” changes on sensor performance. In this case TCRs? calculations
were performed for the 2.5 km altitude nadir looking geometry for the test case of a
green camouflage target against eucalypt background. The time of day was varied
from 12:00 noon, in 2 hour periods to represent 10:00/14:00, 8:00/16:00 and 6:00/18:00.
The solar zenith angle for each of these times is illustrated in Figure 4.7. All other
input parameters were held constant.

Time (hours from noon)

10 4
20 A
30 1
40 -
50 4
60 4
70 -
80
90

Solar Zenith Angle (Degrees)
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Figure 4.7. Solar zenith angle verses time-of day for Darwin, January 1.
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A similar outcome to that seen in Section 4.7.1 was obtained, with the TCRs? values
being nearly identical for all 4 times tested. Again this illustrates if target and
background experience the same modulating influence on their signals, and the
detection performance is not limited by other factors such as system noise, then the
TCRs? values and detection performance will be ‘time-of-day” independent.

Clearly this is not realistic and the AVIRIS sensor’s performance will degrade
significantly due to intrinsic ‘system noise’ as the source illumination diminishes
early in the morning and late in the evening. This problem is expanded upon, in
Section. 4.8

4.8 Sensor Signal to Noise Considerations

All hyperspectral sensor systems have a minimum threshold sensitivity level
determined by intrinsic system parameters, including mechanical, optical, and
electronic characteristics. To calibrate a sensor system’s performance, a noise-
equivalent-radiance (NER) value can be determined. This NER value provides a
measure of the actual incoming radiance required generating an output signal
equivalent to the system noise. It avoids the otherwise complex and difficult task of
measuring the individual noise characteristics of the system. Hence this NER value
allows for a speedy determination of whether target detection will be limited by
system noise or from other sources.

NER calibration data was available for the AVIRIS sensor. Employing this
calibration data signal-to-noise ratio (SNR) values for a target and background
example can be readily determined. This can be achieved by dividing the incoming
spectral radiance difference between a given target and background by the
appropriate bands NER, as outlined by equation 3.3 Section 3. Ideally for accuracy, a
statistical approach should be used that includes all samples in given target and
background populations.

The green camouflage target and eucalypt background example was used to
demonstrate the effects of system noise on detection performance. As only a “first-
cut’ indicative guide of the effects of system noise on performance was required,
rigorous statistical analysis was not performed. This ‘first-cut’ approach employed
AVIRIS DN sample means for both the target and background. Equation 3.3 was
applied to these means to provide a SNR value for the absolute difference between
the target and background.

As system noise is more likely to influence performance when the source
illumination is reduced, predictions were performed for several alternate times of
the day. Results for the ‘pure-pixel’ 2.5 km nadir looking case are presented in
Figure 4.8. For more complex scenarios, where target and background separation is
likely to be reduced, this “first-cut’ approach may not be of satisfactory accuracy.
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Figure 4.8. Predicted AVIRIS SNR for a green camouflage target against eucalypt
background for various times of the day

From this data the SNR performance for AVIRIS bands 4, 34, 104 and 184 can be
determined as illustrated in Table 4.5.

Table 4.5. SNR verses Time of the Day for AVIRIS Bands 4, 34, 104 and 184

AVIRIS Band Predicted Predicted Predicted Predicted
Band Centre (um) SNR at SNR at SNR at SNR at
Number 12:00 noon | 10:00/14:00 8:00/16:00 6:00/18:00
Band 4 0.399 0.45:1 0.040:1 0.030:1 0.028:1
Band 34 0.673 96:1 84:1 59:1 50:1
Band 104 1.324 146:1 116:1 55:1 44:1
Band 184 2.109 665:1 565:1 333:1 143:1

These results indicate spectral information in Band 4 is dominated by system noise.
Band 4 is concluded as not being useable for target detection purposes. This impacts
on the 2-band analysis results presented in Section 4.5. Thus the performance
enhancement proposed for the Band 4/34 analysis cannot be achieved due to
hardware limitations. Thus this 2-band analysis example must be treated as a
demonstration only.

Band 184 has SNR values in excess of 100:1 for all cases presented. With such large
values it is reasonable to conclude that detection performance is not ‘system limited’
in this band. Bands 34 and 104 demonstrate SNR values of sufficient magnitude for
the mid-day case (96:1 and 146:1 respectively), but the SNR reductions predicted for
the early morning/late evening examples, indicate that system noise begins to make
appreciable contributions 4 to 6 hours from noon.
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In conclusion these results, as expected, illustrate the optimal time for sensor
deployment is a window of 2 to 3 hours either side of 12:00 noon although with
careful band selection this operational window can be expanded to include
morning/evening operation.

An unexpected but important outcome from this SNR analysis is the influence of the
atmosphere at different times of the day. A significant change in the spectral content
of the AVIRIS DN signal (and hence reflected radiation) is observed. A simple
percentage reduction change from 12:00 noon was determined to assess this
variation. This change is illustrated in Figure 4.9.
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Figure 4.9. AVIRIS DN percentage reduction from 12:00 noon for selected times of
the day

A hyperspectral sensor operating in the early morning/late evening (besides being
system noise limited) displays a significant spectral bias compared to the midday
conditions. At 12 noon the solar zenith angle in the test case is 10.7 degrees while at
6:00/18:00 this angle increases to 85 degrees. The greater zenith angle affords a
significantly longer propagation path to the illumination source, and hence
spectrally dependent atmospheric propagation losses are more significant.

The two primary loss processes influencing these results are Rayleigh scattering [12]
and molecular absorption. ‘Large particle’ Mie type aerosol scattering is a more
broadband process and not expected to give rise to the spectrally dependent changes
seen here [15]. The differences seen at the blue end of the spectral range (ca. > 0.6
pm) arise from Rayleigh scattering losses. This scattering is proportional to the
inverse fourth power of the wavelength and doesn’t have significant influence at
wavelengths much longer than 0.6 um. The reduction in signal seen at wavelengths
longer than 1.5 pm is caused by increased water vapour absorption. As a tropical,
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high humidity constituent profile was used in this modelling the influence of this
effect was enhanced.

Thus, in summary, when operating around 12:00 noon, noise appears to be a
performance limiting problem only when target and background separation is small,
thus the TCRs? value can provide a useful guide to these limits. When the
illumination is reduced ‘system noise’ becomes considerably more important when
determining detection performance. The TCRs? measure will not be a useful guide
on these performance limits (as outlined in Section 4.7.2). Spectrally dependent
atmospheric propagation effects must be considered as they can provide a
significant bias on target detection results.

5. Conclusions

This report has addressed a wide variety of issues, which are expected to influence
the performance of hyperspectral sensors as surveillance tools. Fundamental
phenomenology issues have been considered and analysis and results built upon
this foundation. The breadth of this study has ranged from investigation into the
reflectance properties of materials, the influence of the atmosphere, and modelling a
sensor’s performance along with data analysis and target detection assessment.
Although the initial results are encouraging, they need to be taken as only
indicative, due to the limited scope of the analysis.

This study has demonstrated that a sensor operating at hyperspectral resolution has
potential in detecting targets such as green camouflage in an eucalypt background
with high probability and a low false alarm rate. Such targets would be expected to
be difficult to detect by broadband or multi-spectral sensors of similar spatial
resolution.

The ability to detect ‘sub-pixel’ targets is confirmed, with the case presented
indicating high detection probabilities and low false alarm rates even when the
target occupies only 20% of the pixel. These results are consistent with the finding
reported by several other researchers [28,29].

When both targets and background are modified by the same factors, the TCRs?
measure separation remains constant. This conclusion excludes other performance
limiting factors such as system noise, the atmospheric propagation and altitude and
geometry variations that have the potential to markedly alter the test case’s target
and background separation and hence detection performance.

Under normal midday operational conditions target detection performance was not
system noise limited. Only under low light or poor target and background
separation conditions was system noise, as evidenced by a decreased SNR, observed
to reduce detection performance appreciably.
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A sound procedure has been developed upon which this work can be extended. Key
areas of investigation for subsequent studies have been flagged and an approach
outlined for the development of target and background data bases and the provision
of recommendations relating to the most appropriate spectral channels, their band
width and sampling intervals.

5.1 Future work

Complementary work to the above displayed efforts should include a comparison
with alternate multispectral and broadband imaging technology. This is important
to allow assessment of the benefits of EO technology operating at hyperspectral
resolution.

Investigation into the relationship between band-pass and detection performance,
with the view of optimisation of a system’s performance is also recommended. This
approach is expected to provide insight into the best configurations for and
limitations of hyperspectral sensors.

Ideally the results and procedures presented could be used to develop a ‘training
package’ to allow assessment and provide recommendations and solutions about the
most effective hyperspectral system for a given surveillance scenario.

The requirement of experimentally based validation for this modelling approach is
important. This is needed to provide credibility to the results and conclusions made.
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A.2. Background mean reflectance collected by the ASD spectrometer.
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Appendix B

Digital Number (DN) Values Generated from the
Corresponding Reflectance Files in Appendix A
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Figure B.1. Predicted mean AVIRIS DN values for targets used in the report
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Figure B.2. Predicted mean AVIRIS DN values for backgrounds used in the report
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Appendix C

TCRs? Separation of Selected Target and Background
Populations.
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Figure C.1. TCRs? separation of an aluminium dinghy against background
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Figure C.2. TCRs? separation of a blue rubber boat against background
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Figure C.3. TCRs? separation of green camouflage against background
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Figure C.4. TCRs? separation of ared vehicle against background red vehicle
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Figure C.6. TCRs? separation of a white fibreglass boat against background
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Figure C.7. TCRs? separation of a white vehicle against background
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Appendix D
Minimum TCRs? Separation between Targets and All
Backgrounds.
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Figure D.1. Minimum separation between littoral targets and all backgrounds.
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Figure D.2. Minimum separation between terrestrial targets and all backgrounds.
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Appendix E

Sample Distributions of a Green Camouflage Target
and an Eucalypt Background.
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Figure E.1. AVIRIS Band 4, likelihood ratio detector analysis for a green camouflage
target and euacalypt background.
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Figure E.2. AVIRIS Band 34, likelihood ratio detector analysis for a green
camouflage target and euacalyptbackground.
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Figure E3. AVIRIS Band 104, likelihood ratio detector analysis for a green

camouflage target and euacalyptbackground.
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